Changes of hippocampal N-acetyl aspartate and volume in Alzheimer's disease. A proton MR spectroscopic imaging and MRI study.

نویسندگان

  • N Schuff
  • D Amend
  • F Ezekiel
  • S K Steinman
  • J Tanabe
  • D Norman
  • W Jagust
  • J H Kramer
  • J A Mastrianni
  • G Fein
  • M W Weiner
چکیده

Hippocampal atrophy detected by MRI is a prominent feature of early Alzheimer's disease (AD), but it is likely that MRI underestimates the degree of hippocampal neuron loss, because reactive gliosis attenuates atrophy. We tested the hypothesis that hippocampal N-acetyl aspartate (NAA: a neuronal marker) and volume used together provide greater discrimination between AD and normal elderly than does either measure alone. We used proton MR spectroscopic imaging (1H MRSI) and tissue segmented and volumetric MR images to measure atrophy-corrected hippocampal NAA and volumes in 12 AD patients (mild to moderate severity) and 17 control subjects of comparable age. In AD, atrophy-corrected NAA from the hippocampal region was reduced by 15.5% on the right and 16.2% on the left (both p < 0.003), and hippocampal volumes were smaller by 20.1% (p < 0.003) on the right and 21.8% (p < 0.001) on the left when compared with control subjects. The NAA reductions and volume losses made independent contributions to the discrimination of AD patients from control subjects. When used separately, neither hippocampal NAA nor volume achieved to classify correctly AD patients better than 80%. When used together, however, the two measures correctly classified 90% of AD patients and 94% of control subjects. In conclusion, hippocampal NAA measured by 1H MRSI combined with quantitative measurements of hippocampal atrophy by MRI may improve diagnosis of AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age-related metabolite changes and volume loss in the hippocampus by magnetic resonance spectroscopy and imaging.

Magnetic resonance imaging (MRI) studies have produced controversial results concerning the correlation of hippocampal volume loss with increasing age. The goals in this study were: 1) to test whether levels of N-acetyl aspartate (NAA, a neuron marker) change in the hippocampus during normal aging and 2) to determine the relationship between hippocampal NAA and volume changes. Proton magnetic r...

متن کامل

MR and proton spectroscopy of white matter disease induced by high-dose chemotherapy with bone marrow transplant in advanced breast carcinoma.

PURPOSE To determine whether the MR-detectable white matter changes associated with high-dose chemotherapy and bone marrow transplant in patients with advanced breast carcinoma are accompanied by neurochemical disturbances detectable by proton MR spectroscopy. METHODS MR studies were obtained in 13 patients, and single-voxel proton MR spectra were acquired in vivo in 12 of these 13 for compar...

متن کامل

Proton magnetic resonance spectroscopy in focal cortical dysplasia at 3T

PURPOSE Focal cortical dysplasia (FCD) type II is a frequent cause of medically intractable epilepsy. On conventional MRI diagnosis may be difficult. The purpose of our study was to assess the metabolic characteristics of MRI-typical or neuropathologically confirmed FCD II lesions at 3T. METHODS In a prospective study, 13 patients with drug-resistant epilepsy and MRI diagnosis of FCD II (seve...

متن کامل

Alzheimer disease: quantitative H-1 MR spectroscopic imaging of frontoparietal brain.

PURPOSE To replicate previous hydrogen-1 magnetic resonance (MR) spectroscopic imaging findings of metabolic abnormalities in patients with Alzheimer disease (AD), to verify that metabolic abnormalities are not an artifact of structural variations measured at MR imaging, to determine whether metabolic changes correlate with dementia severity, and to test whether MR imaging and MR spectroscopic ...

متن کامل

Detection of Alzheimer\'s disease based on magnetic resonance imaging of the brain using support vector machine model

Background: Alzheimer's disease (AD) is the most common disorder of dementia, which has not been cured after its occurrence. AD progresses indiscernible, first destroy the structure of the brain and subsequently becomes clinically evident. Therefore, the timely and correct diagnosis of these structural changes in the brain is very important and it can prevent the disease or stop its progress. N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurology

دوره 49 6  شماره 

صفحات  -

تاریخ انتشار 1997